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� BPA and low-Se induced pancreatic
tissue damage, apoptosis, and
mitophagy.

� PTEN/PI3K/AKT/mTOR pathway was
involved in apoptosis and mitophagy
induced by BPA and low-Se.

� BPA and low-Se induced
mitochondrial dysfunction and
homeostasis imbalance.

� The co-exposure of BPA and low-Se
exacerbated pancreatic tissue
damage, apoptosis, and mitophagy.
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Introduction: Bisphenol A (BPA) is a widespread environmental pollutant which has serious toxic effects
on organisms. One of the crucial trace elements is selenium (Se), whose shortage can harm biological tis-
sues and enhance the toxicity of contaminants, in which apoptosis and autophagy are core events.
Objectives: An in vivo model was established to investigate the effects of BPA and low-Se on chicken pan-
creatic tissue, and identify the possible potential molecular mechanism.
Methods: A total of 80 1-day-old broiler chickens (Xinghua Chicken Farm, Harbin, China) were stochas-
tically divided into 4 groups (n = 20/group): Control group, BPA group, low-Se group, and low-Se + BPA
group. Pancreatic tissue was collected at day 42 to detect changes in markers.
Results: First, the data showed that BPA and low-Se exposure gave rose to structural abnormalities in
pancreatic tissue, oxidative stress, mitochondrial dysfunction and homeostasis imbalance, apoptosis
and mitophagy. In addition, the co-exposure of BPA and low-Se caused the most serious damage to pan-
creatic tissue. In terms of mechanism, it was found that apoptosis and mitophagy induced by BPA and
low-Se were related to the activation of PTEN/PI3K/AKT/mTOR pathway.
Conclusion: In summary, the study found that BPA and low-Se exacerbated mitochondria damage, apop-
tosis and mitophagy by regulating the PTEN/PI3K/AKT/mTOR pathway.
� 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction Materials and methods
Bisphenol A (BPA) is a prevalent chemical contaminant that
commonly applied in the production of various of industrial and
everyday products [1]. Since the 1950 s, BPA has been widely used
in the production of electrical equipment, bottles, beverage con-
tainers, etc., and can be ingested by humans and animals through
leaching into food [2,3]. BPA poses a potential threat to ecosystems
and organism health [4,5]. According to reports, from 2011 to
2012, the average daily intake of BPA by the general population
in the United States was 25 ng/kg/d [6]. Based on global urinary
concentration data from 2000 to 2016, the maximum daily intake
of BPA for adults was 64.75 ng/kg/day [7]. However, in China, the
maximum daily intake of BPA for adults can reach 106.77 ng/kg/day
[8]. BPA is an endocrine disruptor and have estrogenic effects, or it
can bind directly to androgen receptors to block endogenous
androgenic effects [9,10]. BPA is also interacted with multiple
physiological systems and organs, for example, the central nervous
system, immune system, pancreas, and thyroid [11]. Several
reports have shown that BPA exposure can lead to oxidative stress,
apoptosis, mitophagy, metabolic disorders, and mitochondrial dys-
function [12–18].

Oxidative stress is induced by the imbalance of the body’s
oxidative/antioxidant system. However, BPA exposure could cause
oxidative stress and further trigger multifarious signaling path-
ways, leading to cell apoptosis, and autophagy [19,20]. PTEN is a
classic tumor suppressor factor that is crucial for cell energy meta-
bolism and survival, mainly contained in regulating the phos-
phatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling
pathway [21]. The PI3K/AKT pathway is a classic signaling path-
way, which is critical for maintaining cell development, basic func-
tions, and stability [22]. Pollutants exposure can also induce
autophagy and accelerate cell apoptosis in PC12 cells by mediating
the PTEN/PI3K/AKT pathway [23]. Mammalian target of rapamycin
(mTOR) is a serine/threonine kinase that can respond to a variety of
environmental signals. The PI3K/AKT pathway is an upstream reg-
ulatory factor of mTOR, which can regulate mTOR and further
affect cell cycle and metabolism [24]. Zhou et al. discovered that
Tan I caused apoptosis and autophagy in ovarian cancer cells by
regulating the PI3K/AKT/mTOR pathway [25]. PTEN also protects
the kidney from acute kidney injury by mediating PI3K/AKT/mTOR
pathway to reduce apoptosis and promote autophagy [26]. In addi-
tion, it has been found in mouse experiments that BPA can disrupt
pancreatic endocrine blood glucose homeostasis in mice [13].

Selenium (Se) is a vital trace element in living organisms, play-
ing a vital role in antioxidant, anti-inflammatory, detoxifying, and
enhancing the body’s immunity. Reports have shown that dietary
low-Se caused pancreatic injury, apoptosis of pig intestinal epithe-
lial cells, apoptosis of rat liver cells, and bursa autophagy [27–32].
Low-Se and toxicity of other environmental pollutants also have
synergistic effects, for example, low-Se aggravates the immune
toxicity of chicken spleen and liver induced by Aspergillus flavus
B1 (AFB1) [33,34]. However, the mechanism of the toxic action of
BPA and low-Se on the chicken pancreas and whether there is a
synergistic effect of the two negative effects are unknown. There-
fore, in this study, a series of animal models of BPA and low-Se
were established. In this experiment, transmission electron micro-
scopy (TEM), hematoxylin-eosin (H.E.) staining, kit detection, real-
time quantitative PCR (qRT-PCR), Western blot analysis and other
experimental techniques were used to investigate the mechanism
of BPA and low-Se induced pancreatic toxicity. This study not only
enriched the mechanisms of pathology, but also enriched our
understanding of them.
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Ethics statement

The Northeast Agricultural University Ethics Committee
(Approved Number: NEAUEC-2023–03111, China) gave its
approval to all experimental methods.
Animal and experimental design

A total of 80 1-day-old broiler chickens (Xinghua Chicken
Farm, Harbin, China) were stochastically divided into 4 groups
(n = 20/group): Control group, BPA group, low-Se group, and
low-Se + BPA group. The chickens in all groups had free access to
food and water. The feed components of each group are shown
in Table 1 (Supplementary material). The chickens were fed for
42 days. On the 42 day, each chick fasted for 24 h and were killed
by heart puncture [35]. The collected pancreatic tissues were
stored in 10 % formaldehyde or �80 �C.
Oxidative stress detection

Pancreatic oxidative stress indexes (Nanjing Jiancheng, China,
A001-3 SOD assay kit, A006-1–1 GSH assay kit, A007-1–1 CAT
assay kit, A003-1 MDA assay kit, A015-2–1 T-AOC assay kit) were
detected with kit. Strictly follow the manufacturer’s operating
instructions. In brief, a 10 % normal saline homogenate with
0.1 g pancreas was prepared, centrifuged (7500 r/min, 10 min),
the supernatant was collected, and the OD value was measured
according to the manufacturer’s guidelines. The activity or content
of SOD, GSH, CAT, MDA and T-AOC were calculated according to
the formula (Supplementary material).
ATP content determination

The content of ATP in pancreatic tissue was detected by kit
(Nanjing Jiancheng, China, A095–1–1 ATP content assay kit).
Strictly follow the manufacturer’s operating instructions. In brief,
a 10 % normal saline homogenate with 0.1 g pancreas was pre-
pared, centrifuged (7500 r/min, 10 min), the supernatant was col-
lected, and the OD value was measured according to the
manufacturer’s guidelines. The content of ATP was calculated
according to the formula (Supplementary material).
H.E. staining

Pancreatic tissues were fixed for 24 h (10 % formaldehyde),
embedded in paraffin, and sliced (0.5 lm), stained with hema-
toxylin and eosin. Image observation was done with a light
microscope.
TEM observation

The steps were as follows: (1) Each group of pancreatic tissue
were fixed with 2.5 % glutaraldehyde; (2) 1 % osmium tetroxide
were used for fixation; (3) Analytical pure-grade ethanol was used
for dehydration; (4) The samples were embedded in alardate and
cut into thin slices; (5) Images were captured using an H-9500
TEM after the slices had been dyed with lead citrate and uranium
acetate.
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Immunofluorescence (IF) staining

According to Wu et al. ’s research[36], specific test operations
were carried out. (1) Pancreatic tissue was fixed with 10 %
formaldehyde; (2) Embedded in paraffin; (3) Gradient alcohol
dewaxing; (4) Antigen repair; (5) Seal the sections with serum
(5 % FBS-TBST) for 30 min and incubate overnight with the p62
and LC3B antibodies (p62, 1:200, Bioss, China; LC3B, 1:200, ABclo-
nal, China); (6)the next day, incubate the Dylight 488 goat anti-
rabbit IgG and Dylight 594 goat anti-rabbit IgG antibodies (Dylight
488 goat anti-rabbit IgG, 1:1000, Biodragon, China; Dylight 594
goat anti-rabbit IgG, 1:1000, Biodragon, China) for 30 min; (7) After
sealing, observe and take photos using a fluorescence microscope.

Terminal deoxynucleotidyl nick-end labeling (TUNEL) staining

The TUNEL kit (Shanghai Biyuntian, China) was applied to
detect the number of apoptotic cells in pancreatic samples, and
optical microscope (Olympus BX63, Japan) was used to observe
and took photos of apoptotic cells. After fixation, dehydration,
paraffin embedding, and sectioning (5 lm), the pancreatic was
stained. The nucleus of TUNEL stained positive cells were brownish
brown, while the normal cells were blue.

qRT-PCR analysis

Total RNA were separated from pancreatic tissue using the Tri-
zol method [37]. Detailed procedures and contents were provided
in the supplementary materials. The primer sequences are shown
in Table 2 (supplementary materials).

Western blot analysis

The tissue lysates (PMSF + IP = 100:1, Beyotime, China) were
used to process pancreatic tissue to extract total protein for subse-
quent Western blot analysis [38]. Detailed steps can be found in
supplementary materials. The dilution concentration of the anti-
bodies was shown in Table 3 (supplementary materials).

Statistical analysis

All test data were normal distribution. One-way ANOVA and
Tukey’s method were used to compare the differences between
groups for statistical significance. Every piece of data was shown
as mean ± standard deviation. GraphPad Prism was applied to sta-
tistically analyze all the data. Different superscripts indicate signif-
icant differences (P < 0.05), while containing the same superscripts
indicates no significant differences (P � 0.05).

Results analysis

Effects of BPA and low-Se on pancreatic pathological damage

Light microscopy was used to conduct histopathological exam-
ination of the chicken pancreatic in all groups. Hematoxylin dyes
can stain the nucleus and cytoplasmic ribosomes blue, and eosin
dyes can stain the cytoplasmic and extracellular matrix compo-
nents red, so the histological cells state can be judged according
to different colors and their distribution. The results of Fig. 1 A
indicated that the Control group didn’t show any pathological
changes, and the acini were arranged neatly with complete struc-
ture. The glia in the acinar cavity was uniform and the contours
were visible. The BPA group and low-Se group showed significant
pathological changes in the pancreas, with some acinar epithelial
cells showing atrophy, degeneration, or loss, disordered acinar
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arrangement, some nuclear pyknosis or dissolution disappearance,
and slight vacuolar degeneration. However, the pathological
changes in the low-Se + BPA group were more pronounced, with
a loose acinar arrangement and widened interlobular spaces.

In addition, the TEM method was used to further observe the
ultrastructure of the pancreas. The results of Fig. 1 B indicated that
the cellular structure of pancreas tissue in the Control group was
clear and the organelle structure was complete. Autophagy bodies
(Red arrow), mitochondrial ridge breaks, and chromatin agglutina-
tion were found in pancreatic cells of the BPA group and low-Se
group. The same phenomenon was observed in the pancreatic cells
in the low-Se + BPA group, and the ultrastructural damage of pan-
creatic cells in the co-exposure group was significantly increased
compared with that in the bisphenol a group and the low-Se group.
Effects of BPA and low-Se on pancreatic cells apoptosis and autophagy

Firstly, the apoptosis of pancreatic cells apoptosis and autop-
hagy were detected by IF staining. Compared to the Control group,
the TUNEL staining showed that a significant increase in the num-
ber of apoptotic cells which induced by BPA and/or low-Se expo-
sure (Fig. 2 A, B). The IF staining results of pancreatic tissues
showed that compared with the Control group, the fluorescence
intensity of autophagy index LC3B was significantly enhanced,
and the fluorescence intensity of autophagy index p62 was signif-
icantly decreased in all treatment groups (P < 0.05) (Fig. 2 C, D). In
addition, the number of autophagy and apoptotic cells in the co-
exposure group was higher than that in the single treatment group.
This indicated that both BPA and low-Se induced apoptosis and
autophagy, and their co-exposure exacerbated cell apoptosis and
autophagy.
Effects of BPA and low-Se on pancreatic oxidative stress

Oxidative stress is often the trigger of various diseases or patho-
logical lesions, so the oxidative stress indicators (T-AOC, MDA CAT,
GSH, SOD) were measured using commercial kits. Compared with
the Control group, the MDA contents in the BPA and/or low-Se
groups were increased, and the activities or levels of CAT, SOD,
GSH, T-AOC were reduced (P < 0.05). In particular, the oxidative
stress induced by combined exposure was stronger than that of
the single treatment group (Fig. 3). This indicates that both BPA
and low-Se resulted in oxidative stress in the chicken pancreas,
and the co-exposure group had more severe oxidative stress.
Effects of BPA and low-Se on the PTEN/PI3K/AKT/mTOR pathway in
pancreatic cells

The effects of apoptosis and autophagy induced by BPA and
low-Se exposure may be related to the PTEN/PI3K/AKT/mTOR
pathway. The results were shown in Fig. 4, compared with the Con-
trol group, the expressions and protein levels of PTEN in the BPA
and/or low-Se groups were obviously upregulated, and the mRNA
expressions of PI3K, AKT, and mTOR, as well as the protein levels
of p-PI3K and p-AKT were significantly downregulated (P < 0.05).
The co-exposure group showed significant changes in PTEN, PI3K,
AKT, mTOR, p-PI3K, and p-AKT compared to the BPA or low-Se
groups (P < 0.05). This indicated that BPA and/or low-Se caused
apoptosis and mitophagy in chicken pancreatic cells via regulating
the PTEN/PI3K/AKT/mTOR pathway. Similarly, there was a certain
synergistic effect between BPA and low-Se.



Fig. 1. Effects of BPA and low-Se on pancreatic pathological damage (n = 3). A: H.E. staining results; B: Transmission electron microscopy results.

Fig. 2. Effects of BPA and low-Se on pancreatic cell apoptosis and autophagy (n = 3). A: TUNEL staining results (100 � ); B: TUNEL staining column analysis diagram; C: LC3B,
p62 IF staining results (100 � ); D: LC3B, p62 IF staining column analysis diagram. Different superscripts indicate significant differences (P < 0.05), while containing the same
superscripts indicates no significant differences (P � 0.05). The entire text used the same annotation method.
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Fig. 3. Effects of BPA and low-Se on pancreatic oxidative stress indicators (CAT, GSH, SOD, MDA, T-AOC) (n = 3).
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Effects of BPA and low-Se on mitochondrial function and homeostasis
in pancreatic cells

BPA and low-Se exposure caused mitochondrial ridge breaks.
The commercially kits, qRT-PCR and Western blot analysis was
used to detect the associated indicators of mitochondrial function.
The study showed that compared with the Control group, the ATP
contents in the BPA and/or the low-Se groups were decreased sig-
nally (Fig. 5 A), and the mitochondrial homeostasis was unbal-
anced, namely, the expressions and protein levels of Mfn1, Mfn2,
OPA1 were decreased signally, and the expressions and protein
levels of DRP1 were increased signally (Fig. 5 B, C). The levels of
mitochondrial oxidative phosphorylase were decreased (Fig. 5 D)
(P < 0.05). This indicated that exposure to BPA and low-Se lead
to mitochondrial dysfunction and homeostasis imbalance in
Fig. 4. Effects of BPA and low-Se on the PTEN/PI3K/AKT/mTOR pathway in pancreatic cell
columnar analysis of the signaling pathway.
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pancreatic cells, and the low-Se + BPA group showed more obvious
changes.

Effects of BPA and low-Se on pancreatic apoptosis and mitophagy

BPA and low-Se damaged the pancreatic tissue, induced apopto-
sis and mitochondrial autophagy. This was further confirmed using
Western blot analysis and qRT-PCR methods. The results were dis-
played in Fig. 6, compared with the Control group, the expressions
and protein levels of BAX, Caspase-3, and Caspase-9 were obvious
up-regulation in the BPA and/or low-Se groups, while Bcl-2 was
lower. Especially in the low-Se + BPA group, the expression and
protein levels of BAX, Bcl-2, Caspase-3, and Caspase-9 showed
higher changes compared to the individual exposure groups
(P < 0.05). Similarly, the expressions and levels of LC3-II/I, ATG5,
s (n = 3). A: The mRNA expression of signaling pathway; B: The protein banding and



Fig. 5. Effects of BPA and low-Se on mitochondrial function and homeostasis in pancreatic cells (n = 3). A: Changes in ATP content; B: The mRNA expression of Mfn1, Mfn2,
OPA1, DRP1; C: The protein banding and columnar analysis of Mfn1, Mfn2, OPA1, DRP1; D: The protein banding and columnar analysis of mitochondrial oxidative
phosphorylase (NDUFB8, SDHB, UQCRC2, MTCO1, ATP5A1).
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PINK1, and Parkin were obviously increased in the BPA and low-Se
groups, while p62 was reduced (P < 0.05). Moreover, the expres-
sions and levels of LC3-II/I, ATG5, PINK1, and Parkin in the low-
Se + BPA group were obviously higher than those in the BPA and
low-Se groups, while p62 was reduced (P < 0.05). These data indi-
cated that both BPA and low-Se caused apoptosis and mitophagy,
and the co-exposure of BPA and low-Se lead to more severe apop-
tosis and mitophagy.
Discussion

A large number of reports have shown that BPA exposure was
related to obesity, diabetes, and cancer [39–41]. Besides, BPA expo-
sure induces apoptosis and autophagy [42]. The pancreas is also
one of the target organs for BPA, which can damage the pancreas
[14,43]. Low concentration BPA exposure induces Beta-TC-6 cells
to oxidative stress, apoptosis and mitochondrial dysfunction [15].
Oxidative stress regulates multiple signaling pathways and pro-
motes cellular toxicological processes [44]. Exposure to
environmental-related doses of BPA can also induce Caspase-3
activation and apoptosis in mouse pancreatic a cells [45]. Simi-
larly, low-Se leads to a decrease in the number of functional acinar
mitochondria and impaired mitochondrial integrity, oxidative
stress, pancreatic underdevelopment and atrophy [46–49]. Besides,
report has shown that the lack of Se had a synergistic influence on
the toxicity of pollutants [50]. Consistent with previous research
findings, the study suggested that both BPA and low-Se gave rise
to oxidative stress, mitochondrial dysfunction and homeostasis
imbalance, apoptosis, and mitophagy, PTEN expression was
enhanced, while PI3K/AKT/mTOR expressions were inhibited.
Moreover, the co-exposure of BPA and low-Se had a stronger toxi-
city, indicating a synergistic effect between low-Se and the toxicity
caused by BPA exposure.
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Oxidative stress is concerned with regulating a variety of cell
processes, for instance apoptosis, autophagy, and pyroptosis. Previ-
ous studies have confirmed that BPA can induce oxidative stress,
increase ROS levels, lead to decreased SOD and GSH activities,
and show a dose-dependent effect [51,52]. In addition, low-Se
can also significantly induce oxidative stress, resulting in
decreased activities of glutathione peroxidase (GSH-Px) and CAT,
and increased MDA content [27]. These results suggested that both
BPA and low-Se can cause oxidative stress. Similarly, our data
showed that the activities of SOD, GSH, and CAT were significantly
decreased, and MDA levels were increased. T-AOC represents total
antioxidant capacity, which refers to the defense ability of the
antioxidant system and is an effective indicator of oxidative stress
[53]. Our results found that BPA and low-Se leaded to a decrease in
T-AOC levels, and the co-exposure of BPA and low-Se exacerbated
the decrease in T-AOC, indicating that BPA and low-Se generated
oxidative stress and leaded to oxidative damage.

It is worth noting that the emergence of oxidative stress can
induce upregulation of PTEN expression, inhibits the PI3K/AKT
pathway, and eventually lead to cell apoptosis [54]. Chlorpyrifos
exposure induces oxidative stress in grass carp hepatocytes,
increases PTEN expression, inhibits PI3K/AKT expression, and pro-
motes apoptosis and necrosis of hepatocytes [55]. The above stud-
ies all indicate an opposite correlation between PTEN and the PI3K/
AKT pathway. mTOR is a highly conserved protein kinase closely
related to apoptosis, growth, autophagy. The activation of the
PI3K/AKT/mTOR pathway has an anti-apoptosis effect, capsaicin
regulates PI3K/AKT/mTOR pathways to reduce acute lung injury
induced by Lipopolysaccharide (LPS) [56]. Artemisinin inhibites
cartilage PI3K/AKT/mTOR pathway to further activates mitophagy
and alleviates osteoarthritis [57]. In addition, polystyrene
microplastics induces autophagy and apoptosis in birds’ lungs cells
by activating PTEN/PI3K/AKT/mTOR pathway [58]. When



Fig. 6. Effects of BPA and low-Se on pancreatic apoptosis and mitophagy (n = 3). A: The mRNA expression of indicators related to cell apoptosis and mitophagy; B: Protein
bands related to indicators of cell apoptosis and mitophagy; C: Protein column analysis of indicators related to cell apoptosis and mitophagy.
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melatonin and sirolimus are combined to treat HNSCC cells, the
AKT/mTOR pathway is inhibited, regulating mitochondrial func-
tion, and activating mitophagy and apoptosis [59]. In our study,
BPA and low-Se induced pancreatic tissue damage in chickens,
leading to mitochondrial dysfunction via activation of the PTEN/
PI3K/AKT/mTOR pathway, further inducing cell apoptosis and
mitophagy. The toxicity of BPA and low-Se had a certain synergistic
effect.

Conclusion

In conclusion, the possible mechanism of the activation of
PTEN/PI3K/AKT/mTOR pathway contributed to BPA and low-Se-
induced pancreatic injury is expounded. PTEN/PI3K/AKT/mTOR
pathway activation caused mitochondrial dysfunction and mito-
chondrial homeostasis imbalance to trigger apoptosis and mito-
phagy, contributing to BPA and/or low-Se-triggered pancreatic
toxicity. These results shed light on the crosstalk among PTEN/
PI3K/AKT/mTOR pathway, apoptosis and mitophagy in BPA and/
or low-Se-induced pancreatic injury. This study not only enriched
the mechanism of toxic of BPA and low-Se, but also provided a
new understanding of their co-exposure, and provided valuable
new insights into pancreatic injury.
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